Titanium vs Stainless Steel in CNC Machining

Stainless Steel vs Titanium in CNC Machining
Jack Lie CNC machining expert

Specialize in CNC Milling, CNC Turning, 3D Printing, Urethane Casting, and Sheet Metal Fabrication Services.


CNC machining is a manufacturing process that is highly compatible with a wide variety of metal materials. Among these materials, stainless steel and titanium are two of the most commonly used when creating custom parts or prototypes. Both of these materials are versatile and have a similar appearance. You can find products made from stainless steel and titanium in many different applications all around us. Stainless steel is frequently used in cookware, consumer goods, construction, ships, and more. On the other hand, titanium is much lighter in weight and is often used in medical devices, sporting goods, bicycles, automobiles, and aerospace industries. But which one of these two popular metals should you choose for your CNC machining project?

In this article, we will thoroughly analyze the differences between stainless steel and titanium in the CNC machining process from various perspectives to guide you in choosing the best material for your project.

Comparative Table of the Difference between Titanium & Stainless Steel

Titanium and stainless steel possess distinct and superior qualities that discern one from the other. To help clarify this comparison, we will expound on a vast array of properties that sets these two metals apart from each other. These properties encompass diverse aspects such as their elemental composition, their ability to resist corrosion, conduct electricity and heat, their melting point, their degree of hardness, their weight, and other facets worth exploring.

PropertyTitaniumStainless SteelConclusion
DurabilityIt’s a lighter and more corrosion-resistant metal and also more resistant to high temperatures and thermal shock than stainless steelIt’s more resistant to scratches and dents than titanium, and is easier to maintain due to its non-porous surfaceBoth titanium and stainless steel are highly durable metals, the choice between them up to the specific application
Cost/PriceIt tends to be more expensive than stainless steel due to its higher processing and production costsIt’s generally a cost-saving solution widely used in manufacturing industriesTitanium is ideal for crucial applications such as medical and aerospace, stainless steel is preferred when budget is the prerequisite
HardnessIt forms a hard oxide layer that resists most forces with high strength-to-weight ratioIts hardness depends on the alloy composition and manufacturing process usedBoth titanium and stainless steel are strong and durable metals used for rough environments
WeightIts density is approximately 4.51 g/cm³Its density is around 7.9 g/cm³Titanium is roughly 40% lighter than steel of the same volume
Corrosion ResistanceIt’s known for its excellent corrosion resistance in a wide range of natural and artificial environments due to the formation of an oxide layerIt has moderate corrosion resistance due to its chromium content which forms a passive filmStainless steel is more susceptible to corrosion than titanium in certain environments and conditions
Electrical ConductivityIts electrical conductivity is about 3.1 x 10^6 siemens/meterRange from 1.45 x 10^6 to 2.5 x 10^6 siemens/meter depending on the specific grade of stainless steelStainless steel is generally a better conductor of electricity than titanium
Thermal ConductivityIts thermal conductivity is about 22 W/(m*K)Varies depending on its composition and can range from 14.4 W/(m*K) to 72 W/(m*K) for austenitic stainless steelsGenerally, stainless steel has a lower thermal conductivity compared to titanium due to its greater resistance to heat transfer
Melting PointIt has a melting point of 1,668°C (3034°F)It typically has a melting point of 1,400-1,500°C (2,552-2,732°F)Titanium has a higher melting point compared to stainless steel
MachinabilityIt’s difficult to machine as its elastic modulus is low, indicating that it flexes and deforms easilyIt has a higher elastic modulus and a lower tendency to stick to cutting tools, making it easier to machineIn general, stainless steel can be easier to machine than titanium due to its lower strength and hardness
FormabilityIt has a lower formability than stainless steel due to its lower ductility and work hardening tendencyIt’s a ductile and malleable metal, so it can be easily formed into various shapes without breaking or crackingUsually, stainless steel is easier to work with and has better formability than titanium
WeldabilityIt has a high melting point and high reactivity to oxygen, which can make it difficult to weldIt has lower reactivity to oxygen, and its weldability depends on the specific alloy usedOverall, the weldability of titanium is more challenging than that of stainless steel
Yield StrengthIt’s considered one of the strongest metals per unit mass, as it exhibits similar strength to stainless steel at half the densityDepending on the alloying elements, the yield strength of stainless steel varies from 25 MPa to 2500 MPaStainless steel is a better choice for projects that require overall strength, while titanium is preferred when strength per unit mass is necessary
Tensile StrengthCommercially pure titanium has a tensile strength ranging from 240-410 MPa (megapascals), while some high-strength alloys can have a tensile strength of up to 1,400 MPaThe tensile strength of stainless steel typically ranges from 515-827 MPa depending on the grade and type of stainless steelThe tensile strength of stainless steel is generally higher than that of titanium
Shear StrengthThe shear strength of titanium ranges from about 300 to 580 MPa (43,500 to 84,000 psi) The typical shear strength of stainless steel ranges from 400 to 800 MPa (58,000 to 116,000 psi)Stainless steel is higher than titanium in resistance against shear load
Appearance/ColorTitanium is a silver-gray colour in its natural stateStainless steel has a more silver-like or grayish-white hueStainless steel will still have a metal-like shine to it after being coated or finished, whereas titanium’s natural colour will always be visible
ApplicationsHigh strength-to-weight ratio
Excellent corrosion resistance
Highly resilient to extreme temperatures
Highly versatile  
Great corrosion resistance
High strength
Good durability
Titanium: Aerospace, Industrial, Architectural, Consume, Jewelry, Medical Industry, Storage of Nuclear Waste;
Stainless steel: Architecture, Paper, pulp, and biomass conversion, Processing of Chemicals and Petrochemical, Food & Beverage, Energy, Firearms, Automobiles, Medical, 3D printing
CNC machined titanium parts
CNC machined stainless steel part

How to Choose the Right One for Your CNC Machining Project: Stainless Steel or Titanium?

A variety of titanium and stainless steel alloys have found widespread usage in the field of CNC machining. For an in-depth analysis of how these two materials fare in machining processes, you may refer to the comparative table presented herein. You can also head over to our page detailing Stainless Steel Machining and Titanium Machining services to acquire more comprehensive details.

TitaniumStainless Steel
AlloysTitanium Grade 1
Titanium Grade 2
Titanium Grade 5(TC4, Ti6Al4v)
Stainless steel 303
Stainless steel 304
Stainless steel 316
Stainless steel 416
Stainless steel 17-4PH
Stainless steel 15-5
AdvantagesHigh strength-to-weight ratio
Excellent corrosion resistance
High operating temperatures
Low thermal expansion Nontoxicity
Good heat resistance
Great corrosion resistance
High strength and toughness
DisadvantagesHigh cost
Difficult to machine
Low elasticity
Readily deformed
Magnetism limits their use
Difficult to shape or bend
Heavier than other materials with similar properties
TolerancesIt is determined by the desired effect and the titanium used. A tolerance of ±0.005”(±0.13 mm) is achievable.It is determined by the desired effect and the exact alloy used. A tolerance of ±0.005”(±0.13 mm) is achievable.
Wall ThicknessA minimum wall thickness of ±0.03”(±0.8 mm).A minimum wall thickness of ±0.03”(±0.8 mm).
Part SizeIt’s mostly decided by the available machine and part geometry.It’s mostly decided by the available machine and part geometry.
FinishesAs machined, Case hardening, Anodizing.As machined, Powder coating, Bead blasting.

Conclusion

Stainless steel and titanium are frequently used materials in CNC machining. They can be found in various industries, and their numerous alloys all have remarkable qualities. These alloys can endure practically every CNC machining method once suitable equipment and parameters are utilized. Utilizing the appropriate stainless steel and titanium alloy necessitates a comprehensive grasp of their properties, the machining environment, their intended function, and other significant factors.

At Ransom Precision, we offer CNC machining services that cater to over 50 material options, ranging from metals to plastics and other special materials. Our team of skilled engineers conducts in-depth analysis to ensure that the machining process meets the specific requirements and the tolerance limits for creating accurate components for various applications across different industries. We have a highly proficient team of experts who utilize the latest CNC technology to bring your designs to life with maximum efficiency, accuracy, and precision.

Get an instant quote to start your CNC machining project now!


Other Articles You May be Interested in: